Private Wells

If your family gets drinking water from a private well, do you know if your water is safe to drink? What health risks could you and your family face? Where can you go for help or advice? EPA regulates public water systems; it does not have the authority to regulate private drinking water wells. Approximately 15 percent of Americans rely on their own private drinking water supplies, and these supplies are not subject to EPA standards, although some state and local governments do set rules to protect users of these wells. Unlike public drinking water systems serving many people, they do not have experts regularly checking the waters source and its quality before it is sent to the tap. These households must take special precautions to ensure the protection and maintenance of their drinking water supplies.

Basic Information

There are three types of private drinking water wells: dug, driven, and drilled. Proper well construction and continued maintenance are keys to the safety of your water supply. Your state water-well contractor licensing agency, local health department, or local water system professional can provide information on well construction. The well should be located so rainwater flows away from it. Rainwater can pick up harmful bacteria and chemicals on the lands surface. If this water pools near your well, it can seep into it, potentially causing health problems. Water-well drillers and pump-well installers are listed in your local phone directory. The contractor should be bonded and insured. Make certain your ground water contractor is registered or licensed in your state, if required. If your state does not have a licensing/registration program contact the National Ground Water Association. They have a voluntary certification program for contractors. (In fact, some states use the Associations exams as their test for licensing.) For a list of certified contractors in your state contact the Association at (614) 898-7791 or (800) 551-7379. There is no cost for mailing or faxing the list to you.

To keep your well safe, you must be sure possible sources of contamination are not close by. Experts suggest the following distances as a minimum for protection farther is better:

Many homeowners tend to forget the value of good maintenance until problems reach crisis levels. That can be expensive. Its better to maintain your well, find problems early, and correct them to protect your wells performance. Keep up-to-date records of well installation and repairs plus pumping and water tests. Such records can help spot changes and possible problems with your water system. If you have problems, ask a local expert to check your well construction and maintenance records. He or she can see if your system is okay or needs work.

Protect your own well area. Be careful about storage and disposal of household and lawn care chemicals and wastes. Good farmers and gardeners minimize the use of fertilizers and pesticides. Take steps to reduce erosion and prevent surface water runoff. Regularly check underground storage tanks that hold home heating oil, diesel, or gasoline. Make sure your well is protected from the wastes of livestock, pets, and wildlife.

Dug Wells

Dug wells are holes in the ground dug by shovel or backhoe. Historically, a dug well was excavated below the groundwater table until incoming water exceeded the diggers bailing rate. The well was then lined (cased) with stones, brick, tile, or other material to prevent collapse. It was covered with a cap of wood, stone, or concrete. Since it is so difficult to dig beneath the ground water table, dug wells are not very deep. Typically, they are only 10 to 30 feet deep. Being so shallow, dug wells have the highest risk of becoming contaminated.To minimize the likelihood of contamination, your dug well should have certain features. These features help to prevent contaminants from traveling along the outside of the casing or through the casing and into the well.

Dug Well Construction Features

Land activities around a dug well can also contaminate it. While dug wells have been used as a household water supply source for many years, most are relics of older homes, dug before drilling equipment was readily available or when drilling was considered too expensive. If you have a dug well on your property and are using it for drinking water, check to make sure it is properly covered and sealed. Another problem relating to the shallowness of a dug well is that it may go dry during a drought when the ground water table drops.


Graphic of a Driven Well

Driven Wells

Like dug wells, driven wells pull water from the water-saturated zone above the bedrock. Driven wells can be deeper than dug wells. They are typically 30 to 50 feet deep and are usually located in areas with thick sand and gravel deposits where the ground water table is within 15 feet of the grounds surface. In the proper geologic setting, driven wells can be easy and relatively inexpensive to install. Although deeper than dug wells, driven wells are still relatively shallow and have a moderate-to-high risk of contamination from nearby land activities.

Driven Well Construction Features

To minimize this risk, the well cover should be a tight-fitting concrete curb and cap with no cracks and should sit about a foot above the ground. Slope the ground away from the well so that surface water will not pond around the well. If theres a pit above the well, either to hold the pump or to access the fitting, you may also be able to pour a grout sealant along the outside of the well pipe. Protecting the water quality requires that you maintain proper well construction and monitor your activities around the well. It is also important to follow the same land use precautions around the driven well as described under dug wells.


Graphic of a Drilled Well

Drilled Wells

Drilled wells penetrate about 100-400 feet into the bedrock. Where you find bedrock at the surface, it is commonly called ledge. To serve as a water supply, a drilled well must intersect bedrock fractures containing ground water.

Drilled Well Construction Features

Hydrofracting A Drilled Well

Hydrofracting is a process that applies water or air under pressure into your well to open up existing fractures near your well and can even create new ones. Often this can increase the yield of your well. This process can be applied to new wells with insufficient yield and to improve the quantity of older wells.

How can I test the quality of my private drinking water supply?

Consider testing your well for pesticides, organic chemicals, and heavy metals before you use it for the first time. Test private water supplies annually for nitrate and coliform bacteria to detect contamination problems early. Test them more frequently if you suspect a problem. Be aware of activities in your watershed that may affect the water quality of your well, especially if you live in an unsewered area.

Human Health

The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.

What are Some Naturally Occurring Sources of Pollution?

What Human Activities Can Pollute Ground Water?

Septic Tank

Septic tanks are designed to have a leach field around them an area where wastewater flows out of the tank. This wastewater can also move into the ground water.

Bacteria and Nitrates: These pollutants are found in human and animal wastes. Septic tanks can cause bacterial and nitrate pollution. So can large numbers of farm animals. Both septic systems and animal manures must be carefully managed to prevent pollution. Sanitary landfills and garbage dumps are also sources. Children and some adults are at extra risk when exposed to water-born bacteria. These include the elderly and people whose immune systems are weak due to AIDS or treatments for cancer. Fertilizers can add to nitrate problems. Nitrates cause a health threat in very young infants called blue baby syndrome. This condition disrupts oxygen flow in the blood.

What You Can Do...

Private, individual wells are the responsibility of the homeowner. To help protect your well, here are some steps you can take:

Have your water tested periodically. It is recommended that water be tested every year for total coliform bacteria, nitrates, total dissolved solids, and pH levels. If you suspect other contaminants, test for those. Always use a state certified laboratory that conducts drinking water tests. Since these can be expensive, spend some time identifying potential problems.

Testing more than once a year may be warranted in special situations:

  • someone in your household is pregnant or nursing
  • there are unexplained illnesses in the family
  • your neighbors find a dangerous contaminant in their water
  • you note a change in water taste, odor, color or clarity
  • there is a spill of chemicals or fuels into or near your well
  • when you replace or repair any part of your well system

Identify potential problems as the first step to safeguarding your drinking water. The best way to start is to consult a local expert, someone that knows your area, such as the local health department, agricultural extension agent, a nearby public water system, or a geologist at a local university.

Be aware of your surroundings. As you drive around your community, take note of new construction. Check the local newspaper for articles about new construction in your area.

Check the paper or call your local planning or zoning commission for announcements about hearings or zoning appeals on development or industrial projects that could possibly affect your water.

Attend these hearings, ask questions about how your water source is being protected, and don't be satisfied with general answers. Make statements like "If you build this landfill, (just an example) what will you do to ensure that my water will be protected." See how quickly they answer and provide specifics about what plans have been made to specifically address that issue.

Identify Potential Problem Sources

To start your search for potential problems, begin close to home. Do a survey around your well:

If any of these items apply, it may be best to have your water tested and talk to your local public health department or agricultural extension agent to find way to change some of the practices which can affect your private well.

In addition to the immediate area around your well, you should be aware of other possible sources of contamination that may already be part of your community or may be moving into your area. Attend any local planning or appeal hearings to find out more about the construction of facilities that may pollute your drinking water. Ask to see the environmental impact statement on the project. See if underground drinking water sources has been addressed. If not, ask why.

Common Sources of Potiental Ground Water Contamination

Category Contaminant Source
Agricultural
  • Animal burial areas
  • Drainage fields/wells
  • Animal feedlots
  • Irrigation sites
  • Fertilizer storage/use
  • Manure spreading areas/pits, lagoons
  • Pesticide storage/use
Commercial
  • Airports
  • Jewelry/metal plating
  • Auto repair shops
  • Laundromats
  • Boatyards
  • Medical institutions
  • Car washes
  • Paint shops
  • Construction areas
  • Photography establishments
  • Cemeteries Process waste water drainage
  • Dry cleaners fields/wells
  • Gas stations
  • Railroad tracks and yards
  • Gulf courses
  • Research laboratories
  • Scrap and junkyards
  • Storage tanks
Industrial
  • Asphalt plants
  • Petroleum production/storage
  • Chemical manufacture/storage
  • Pipelines
  • Electronic manufacture
  • Process waste water drainage
  • Electroplaters fields/wells
  • Foundries/metal fabricators
  • Septage lagoons and sludge
  • Machine/metalworking shops
  • Storage tanks
  • Mining and mine drainage
  • Toxic and hazardous spills
  • Wood preserving facilities
Residential
  • Fuel Oil
  • Septic systems, cesspools
  • Furniture stripping/refinishing
  • Sewer lines
  • Household hazardous products
  • Swimming pools (chemicals)
  • Household lawns
Other
  • Hazardous waste landfills
  • Recycling/reduction facilities
  • Municipal incinerators
  • Road deicing operations
  • Municipal landfills
  • Road maintenance depots
  • Municipal sewer lines
  • Storm water drains/basins/wells
  • Open burning sites
  • Transfer stations

Pittsburgh Home Inspection